Produkt zum Begriff MLDS:
-
Predictive Analytics: Data Mining, Machine Learning and Data Science for Practitioners
Use Predictive Analytics to Uncover Hidden Patterns and Correlations and Improve Decision-MakingUsing predictive analytics techniques, decision-makers can uncover hidden patterns and correlations in their data and leverage these insights to improve many key business decisions. In this thoroughly updated guide, Dr. Dursun Delen illuminates state-of-the-art best practices for predictive analytics for both business professionals and students. Delen's holistic approach covers key data mining processes and methods, relevant data management techniques, tools and metrics, advanced text and web mining, big data integration, and much more. Balancing theory and practice, Delen presents intuitive conceptual illustrations, realistic example problems, and real-world case studiesincluding lessons from failed projects. It's all designed to help you gain a practical understanding you can apply for profit.* Leverage knowledge extracted via data mining to make smarter decisions* Use standardized processes and workflows to make more trustworthy predictions* Predict discrete outcomes (via classification), numeric values (via regression), and changes over time (via time-series forecasting)* Understand predictive algorithms drawn from traditional statistics and advanced machine learning* Discover cutting-edge techniques, and explore advanced applications ranging from sentiment analysis to fraud detection
Preis: 37.44 € | Versand*: 0 € -
Web and Network Data Science: Modeling Techniques in Predictive Analytics
Master modern web and network data modeling: both theory and applications. In Web and Network Data Science, a top faculty member of Northwestern University’s prestigious analytics program presents the first fully-integrated treatment of both the business and academic elements of web and network modeling for predictive analytics. Some books in this field focus either entirely on business issues (e.g., Google Analytics and SEO); others are strictly academic (covering topics such as sociology, complexity theory, ecology, applied physics, and economics). This text gives today's managers and students what they really need: integrated coverage of concepts, principles, and theory in the context of real-world applications. Building on his pioneering Web Analytics course at Northwestern University, Thomas W. Miller covers usability testing, Web site performance, usage analysis, social media platforms, search engine optimization (SEO), and many other topics. He balances this practical coverage with accessible and up-to-date introductions to both social network analysis and network science, demonstrating how these disciplines can be used to solve real business problems.
Preis: 36.37 € | Versand*: 0 € -
Real-World Data Mining: Applied Business Analytics and Decision Making
Use the latest data mining best practices to enable timely, actionable, evidence-based decision making throughout your organization! Real-World Data Mining demystifies current best practices, showing how to use data mining to uncover hidden patterns and correlations, and leverage these to improve all aspects of business performance. Drawing on extensive experience as a researcher, practitioner, and instructor, Dr. Dursun Delen delivers an optimal balance of concepts, techniques and applications. Without compromising either simplicity or clarity, he provides enough technical depth to help readers truly understand how data mining technologies work. Coverage includes: processes, methods, techniques, tools, and metrics; the role and management of data; text and web mining; sentiment analysis; and Big Data integration. Throughout, Delen's conceptual coverage is complemented with application case studies (examples of both successes and failures), as well as simple, hands-on tutorials. Real-World Data Mining will be valuable to professionals on analytics teams; professionals seeking certification in the field; and undergraduate or graduate students in any analytics program: concentrations, certificate-based, or degree-based.
Preis: 36.37 € | Versand*: 0 € -
Cleve, Jürgen: Data Mining
Data Mining , Data Mining liefert Grundlagen für die Künstliche Intelligenz, indem es Technologien für die Analyse großer Datenmengen bereitstellt. Das Buch deckt den Stoff einer einsemestrigen Vorlesung an Universitäten oder Fachhochschulen ab und ist als klassisches Lehrbuch konzipiert. Es bietet eine Einführung in die wesentlichen Anwendungsgebiete und behandelt die zugehörigen Algorithmen. Die Beispiele und Aufgaben können mit frei verfügbaren Werkzeugen bearbeitet werden. Die vierte Auflage enthält inhaltliche Erweiterungen und Aktualisierungen. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen
Preis: 74.95 € | Versand*: 0 €
-
Wie funktioniert Big Data Analytics?
Wie funktioniert Big Data Analytics? Big Data Analytics beinhaltet die Verarbeitung und Analyse großer Mengen von Daten, um Muster, Trends und Erkenntnisse zu identifizieren. Zunächst werden die Daten gesammelt und gespeichert, dann werden sie mithilfe von speziellen Tools und Algorithmen analysiert. Durch den Einsatz von Data Mining, maschinellem Lernen und künstlicher Intelligenz können Unternehmen wertvolle Einblicke gewinnen und fundierte Entscheidungen treffen. Die Ergebnisse der Analyse können für verschiedene Anwendungen genutzt werden, wie z.B. zur Verbesserung von Produkten und Dienstleistungen, zur Optimierung von Geschäftsprozessen oder zur Vorhersage von zukünftigen Entwicklungen.
-
Ist Machine Learning bereits künstliche Intelligenz?
Machine Learning ist ein Teilgebiet der künstlichen Intelligenz. Es befasst sich mit der Entwicklung von Algorithmen und Modellen, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen zu treffen. Künstliche Intelligenz umfasst jedoch auch andere Bereiche wie Expertensysteme, natürliche Sprachverarbeitung und Robotik.
-
Wie können Big Data Analytics-Technologien im Projektmanagement eingesetzt werden?
Big Data Analytics-Technologien können im Projektmanagement eingesetzt werden, um große Mengen an Daten aus verschiedenen Quellen zu sammeln und zu analysieren. Dies ermöglicht es Projektmanagern, Trends und Muster zu erkennen, Risiken frühzeitig zu identifizieren und fundierte Entscheidungen zu treffen. Darüber hinaus können Big Data Analytics-Technologien auch zur Vorhersage von Projektverzögerungen oder zur Optimierung von Ressourcen eingesetzt werden.
-
Wie entsteht Big Data?
Big Data entsteht durch die Sammlung und Speicherung einer großen Menge von Daten aus verschiedenen Quellen wie Sensoren, Social Media, Transaktionen und mehr. Diese Daten werden dann mithilfe von speziellen Tools und Technologien analysiert und verarbeitet, um Muster, Trends und Erkenntnisse zu identifizieren. Durch die kontinuierliche Erfassung und Analyse von Daten in Echtzeit können Unternehmen fundierte Entscheidungen treffen und ihre Geschäftsprozesse optimieren. Letztendlich ermöglicht Big Data eine tiefere Einblicke in das Verhalten von Kunden, Trends auf dem Markt und ermöglicht die Entwicklung innovativer Produkte und Dienstleistungen.
Ähnliche Suchbegriffe für MLDS:
-
Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python
Now, a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.
Preis: 36.37 € | Versand*: 0 € -
Enterprise Analytics: Optimize Performance, Process, and Decisions Through Big Data
The Definitive Guide to Enterprise-Level Analytics Strategy, Technology, Implementation, and Management Organizations are capturing exponentially larger amounts of data than ever, and now they have to figure out what to do with it. Using analytics, you can harness this data, discover hidden patterns, and use this knowledge to act meaningfully for competitive advantage. Suddenly, you can go beyond understanding “how, when, and where” events have occurred, to understand why – and use this knowledge to reshape the future. Now, analytics pioneer Tom Davenport and the world-renowned experts at the International Institute for Analytics (IIA) have brought together the latest techniques, best practices, and research on analytics in a single primer for maximizing the value of enterprise data. Enterprise Analytics is today’s definitive guide to analytics strategy, planning, organization, implementation, and usage. It covers everything from building better analytics organizations to gathering data; implementing predictive analytics to linking analysis with organizational performance. The authors offer specific insights for optimizing supply chains, online services, marketing, fraud detection, and many other business functions. They support their powerful techniques with many real-world examples, including chapter-length case studies from healthcare, retail, and financial services. Enterprise Analytics will be an invaluable resource for every business and technical professional who wants to make better data-driven decisions: operations, supply chain, and product managers; product, financial, and marketing analysts; CIOs and other IT leaders; data, web, and data warehouse specialists, and many others.
Preis: 29.95 € | Versand*: 0 € -
Getting Started with Data Science: Making Sense of Data with Analytics
Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy!Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now.Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories.Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing.You’ll master data science by answering fascinating questions, such as:• Are religious individuals more or less likely to have extramarital affairs?• Do attractive professors get better teaching evaluations?• Does the higher price of cigarettes deter smoking?• What determines housing prices more: lot size or the number of bedrooms?• How do teenagers and older people differ in the way they use social media?• Who is more likely to use online dating services?• Why do some purchase iPhones and others Blackberry devices?• Does the presence of children influence a family’s spending on alcohol?For each problem, you’ll walk through defining your question and the answers you’ll need; exploring howothers have approached similar challenges; selecting your data and methods; generating your statistics;organizing your report; and telling your story. Throughout, the focus is squarely on what matters most:transforming data into insights that are clear, accurate, and can be acted upon.
Preis: 18.18 € | Versand*: 0 € -
Predictive Analytics: Data Mining, Machine Learning and Data Science for Practitioners, 2nd Edition
Use Predictive Analytics to Uncover Hidden Patterns and Correlations and Improve Decision-MakingUsing predictive analytics techniques, decision-makers can uncover hidden patterns and correlations in their data and leverage these insights to improve many key business decisions. In this thoroughly updated guide, Dr. Dursun Delen illuminates state-of-the-art best practices for predictive analytics for both business professionals and students. Delen's holistic approach covers key data mining processes and methods, relevant data management techniques, tools and metrics, advanced text and web mining, big data integration, and much more. Balancing theory and practice, Delen presents intuitive conceptual illustrations, realistic example problems, and real-world case studiesincluding lessons from failed projects. It's all designed to help you gain a practical understanding you can apply for profit.* Leverage knowledge extracted via data mining to make smarter decisions* Use standardized processes and workflows to make more trustworthy predictions* Predict discrete outcomes (via classification), numeric values (via regression), and changes over time (via time-series forecasting)* Understand predictive algorithms drawn from traditional statistics and advanced machine learning* Discover cutting-edge techniques, and explore advanced applications ranging from sentiment analysis to fraud detection
Preis: 55.63 € | Versand*: 0 €
-
Wie funktioniert Big Data?
Wie funktioniert Big Data?
-
Was ist Big Data?
Big Data bezieht sich auf große Mengen an Daten, die mit hoher Geschwindigkeit und Vielfalt generiert werden. Diese Daten können aus verschiedenen Quellen stammen, wie zum Beispiel sozialen Medien, Sensoren oder Transaktionen. Big Data ermöglicht es Unternehmen, Muster und Trends zu identifizieren, um fundierte Entscheidungen zu treffen und ihre Geschäftsprozesse zu optimieren.
-
Verdient man Geld beim Praktikum in den Bereichen Data Science oder Machine Learning?
Es hängt von verschiedenen Faktoren ab, ob man Geld während eines Praktikums in den Bereichen Data Science oder Machine Learning verdient. In einigen Fällen bieten Unternehmen Praktikumsstellen mit einer Vergütung an, insbesondere wenn es sich um größere Unternehmen handelt. In anderen Fällen kann es sein, dass Praktika unbezahlt sind oder nur eine geringe Aufwandsentschädigung bieten. Es ist wichtig, die individuellen Bedingungen des Praktikums zu prüfen, um herauszufinden, ob eine Vergütung angeboten wird.
-
Wie wichtig ist das Fach Theoretische Informatik für Data Science und Machine Learning?
Das Fach Theoretische Informatik ist für Data Science und Machine Learning nicht unbedingt unverzichtbar, aber es kann dennoch von Vorteil sein. Theoretische Informatik vermittelt grundlegende Konzepte und Algorithmen, die in vielen Bereichen der Informatik relevant sind, einschließlich Data Science und Machine Learning. Ein solides Verständnis der theoretischen Grundlagen kann helfen, komplexe Probleme besser zu verstehen und effiziente Lösungen zu entwickeln.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.